Search Results (10)

View
Selected filters:
  • Waves
Astrophysics Science and Technology Project: Integrating Research and Education (ASPIRE)
Conditions of Use:
Read the Fine Print
Rating

The ASPIRE Lab is now one of the most innovative and interactive science education websites available on the Internet. You will find not only fun interactive labs, but well designed and produced curriculum content, created by teachers for teachers. The powerful combination of inquiry-based content, along with interactive, hands-on labs provides a powerful visualization tool for you and your students to use. Best of all, the ASPIRE Lab is free!

Material Type:
Activity/Lab
Provider:
University of Utah
Provider Set:
ASPIRE
Date Added:
10/13/2005
Double Wells and Covalent Bonds
Conditions of Use:
No Strings Attached
Rating

Explore tunneling splitting in double well potentials. This classic problem describes many physical systems, including covalent bonds, Josephson junctions, and two-state systems such as spin 1/2 particles and ammonia molecules.

Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Chris Malley
Kathy Perkins
Sam McKagan
Date Added:
10/04/2006
Fourier: Making Waves (AR)
Conditions of Use:
Read the Fine Print
Rating

Learn how to make waves of all different shapes by adding up sines or cosines. Make waves in space and time and measure their wavelengths and periods. See how changing the amplitudes of different harmonics changes the waves. Compare different mathematical expressions for your waves.

Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Chris Malley
Danielle Harlow
Sam McKagan
Date Added:
07/01/2005
Models of the Hydrogen Atom
Conditions of Use:
No Strings Attached
Rating

How did scientists figure out the structure of atoms without looking at them? Try out different models by shooting light at the atom. Check how the prediction of the model matches the experimental results.

Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Chris Malley
Kathy Perkins
Michael Dubson
Mindy Gratny
Sam McKagan
Wendy Adams
Date Added:
01/01/2007
Quantum Bound States
Conditions of Use:
No Strings Attached
Rating

Explore the properties of quantum "particles" bound in potential wells. See how the wave functions and probability densities that describe them evolve (or don't evolve) over time.

Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Chris Malley
Kathy Perkins
Sam McKagan
Date Added:
10/02/2006
Radio Waves & Electromagnetic Fields (AR)
Conditions of Use:
Read the Fine Print
Rating

Broadcast radio waves from KPhET. Wiggle the transmitter electron manually or have it oscillate automatically. Display the field as a curve or vectors. The strip chart shows the electron positions at the transmitter and at the receiver.

Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Kathy Perkins
Michael Dubson
Noah Podolefsky
Ron LeMaster
Wendy Adams
Date Added:
06/02/2008
Sound (AR)
Conditions of Use:
Read the Fine Print
Rating

This simulation lets you see sound waves. Adjust the frequency or volume and you can see and hear how the wave changes. Move the listener around and hear what she hears.

Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Danielle Harlow
Kathy Perkins
Ron LeMaster
Wendy Adams
Date Added:
06/01/2004
Wave on a String (AR)
Conditions of Use:
Read the Fine Print
Rating

Watch a string vibrate in slow motion. Wiggle the end of the string and make waves, or adjust the frequency and amplitude of an oscillator. Adjust the damping and tension. The end can be fixed, loose, or open.

Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Danielle Harlow
Michael Dubson
Wendy Adams
Date Added:
06/02/2008