Search Results (5)

View
Selected filters:
  • M.I.T. Blossoms
فن التقريب في العلوم والهندسة: كيفية استخراج إجابات بسرعة
Conditions of Use:
يمكن إعادة ترتيب المحتوى ومشاركته
Rating

ان الغرض من هذا الفيديو التعليمي هو إظهار الطلاب لكيفية التفكير بحرية أكبر حول مشاكل الرياضيات والعلوم. ان الحصول في بعض الأحيان على إجابة تقريبية في فترة أقصرهو أمر يستحق الوقت الموفر. يستكشف هذا الفيديو تقنيات لصنع خلفيات تقريبية سريعة للمغلف الذي ليس فقط مستغرب من جهة الدقة، ولكنه أيضا منيرا لبناء الحدس في فهم العلم. يقترب هذا الفيديو من مستوى الصف العاشرالخاص بالجبر 1 ومن مستوى الفيزياء للعام الأول الثانوي، ولكن المفاهيم المتضمنة به (السرعة، المسافة، الكتلة، إلخ) هي أساسية بما يكفي لأن يستوعبها طلاب العلوم الأصغر سنا. إذا رغبت، بامكان المدرسين جلب بندول الساعة من مختلف الأطوال , الأوزان لتعليقه, و ساعة وقت لقياس الفترة. تتضمن الأمثلة على التمارين التي تمارس في الفصل فيما بين مقاطع الفيديو: سؤال الطلاب لتقدير 29 × 31 دون آلة حاسبة أو ورقة وقلم رصاص؛ وسؤال الطلاب عن ما مدى امكانية وصولهم الى الثقب الأسود بدون الانزلاق بداخله.

نوع المادة:
Lecture
Provider:
MIT Learning International Networks Consortium
Provider Set:
M.I.T. Blossoms
المؤلف:
Stephen M. Hou
Date Added:
06/02/2012
Fabulous Fractals and Difference Equations
Conditions of Use:
Remix and Share
Rating

This learning video introduces students to the world of Fractal Geometry through the use of difference equations. As a prerequisite to this lesson, students would need two years of high school algebra (comfort with single variable equations) and motivation to learn basic complex arithmetic. Ms. Zager has included a complete introductory tutorial on complex arithmetic with homework assignments downloadable here. Also downloadable are some supplemental challenge problems. Time required to complete the core lesson is approximately one hour, and materials needed include a blackboard/whiteboard as well as space for students to work in small groups. During the in-class portions of this interactive lesson, students will brainstorm on the outcome of the chaos game and practice calculating trajectories of different equations.

Material Type:
Lecture
Provider:
MIT Learning International Networks Consortium
Provider Set:
M.I.T. Blossoms
Author:
Laura Zager
Date Added:
06/02/2012
Flu Math Games
Conditions of Use:
Remix and Share
Rating

This video lesson shows students that math can play a role in understanding how an infectious disease spreads and how it can be controlled. During this lesson, students will see and use both deterministic and probabilistic models and will learn by doing through role-playing exercises. The primary exercises between video segments of this lesson are class-intensive simulation games in which members of the class 'infect' each other under alternative math modeling assumptions about disease progression. Also there is an occasional class discussion and local discussion with nearby classmates.

Material Type:
Lecture
Provider:
MIT Learning International Networks Consortium
Provider Set:
M.I.T. Blossoms
Author:
Mai Perches
Richard C. Larson
Sahar Hashmi
Date Added:
06/02/2012
Free Fall
Conditions of Use:
Remix and Share
Rating

This video lesson is an example of ''teaching for understanding'' in lieu of providing students with formulas for determining the height of a dropped (or projected) object at any time during its fall. The concept presented here of creating a chart to organize and analyze data collected in a simple experiment is broadly useful. During the classroom breaks in this video, students will enjoy timing objects in free fall and balls rolling down ramps as a way of learning how to carefully conduct experiments and analyze the results. The beauty of this lesson is the simplicity of using only the time it takes for an object dropped from a measured height to strike the ground. There are no math prerequisites for this lesson and no needed supplies, other than a blackboard and chalk. It can be completed in one 50-60-minute classroom period.

Material Type:
Lecture
Provider:
MIT Learning International Networks Consortium
Provider Set:
M.I.T. Blossoms
Author:
John Bookston
Date Added:
06/02/2012
Guess the Last Ball
Conditions of Use:
Remix and Share
Rating

This video lesson uses the technique of induction to show students how to analyze a seemingly random occurrence in order to understand it through the development of a mathematical model. Using the medium of a simple game, Dr. Lodhi demonstrates how students can first apply the 'rules' to small examples of the game and then, through careful observation, can begin to see the emergence of a possible pattern. Students will learn that they can move from observing a pattern to proving that their observation is correct by the development of a mathematical model. Dr. Lodhi provides a second game for students in the Teacher Guide downloadable on this page. There are no prerequisites for this lesson and needed materials include only a blackboard and objects of two different varieties - such as plain and striped balls, apples and oranges, etc. The lesson can be completed in a 50-minute class period.

Material Type:
Lecture
Provider:
MIT Learning International Networks Consortium
Provider Set:
M.I.T. Blossoms
Author:
Fakhar Lohdi
Date Added:
06/02/2012